
pyArtifact Documentation

David Jetelina

Nov 18, 2018

Contents:

1 Library overview 3
1.1 Card API usage . 3
1.2 Deck code API . 4

2 Changelog 5
2.1 0.3.2 . 5
2.2 0.3.0 . 6
2.3 0.2.0 . 7

3 The main Cards object 9

4 Deck 11

5 Card objects 15
5.1 Card types . 15
5.2 Card Base classes . 16

6 Deck encoding and decoding 19
6.1 Encoding . 19
6.2 Decoding . 20

7 Filtering 21

8 Indices and tables 25

Python Module Index 27

i

ii

pyArtifact Documentation

Pythonic wrapper around Valve’s Artifact API

Contents: 1

pyArtifact Documentation

2 Contents:

CHAPTER 1

Library overview

There are 2 main functions of pyArtifact

• Wrap Valve’s card API with easier to work with pythonic objects

• Wrap deck code API to enable encoding a decoding

1.1 Card API usage

First step will be loading all the cards:

from pyartifact import Cards
cards = Cards()
cards.load_all_sets()

This enables you to use 3 methods to search and filter cards.

First of all there’s filter, for example if you want to find blue spells that cost less than 3 mana:

filtered = cards.filter.type('Spell').color('Blue').mana_cost(lt=3)
To see how many cards we found
len(filtered)
To see the names of the found cards
for card in filtered.cards:

print(card.name)

If you know what you’re looking for, you can simply get it:

Get the card instance by the cards name
storm_spirit = cards.get('Storm Spirit')
Play around with it!
print(f'Storm spirit has {storm_spirit.attack} attack and {storm_spirit.hit_points}
→˓health.')
print(f"When you put him into your deck, he brings the spell '{storm_spirit.
→˓includes[0].name}' with him.")

3

pyArtifact Documentation

1.2 Deck code API

pyArtifact offers two approaches to deck encoding and decoding. If you want to use the card objects showcased above,
you can use the Deck object:

from pyartifact import Deck
deck = Deck.from_code(
→˓"ADCJQUQI30zuwEYg2ABeF1Bu94BmWIBTEkLtAKlAZakAYmHh0JsdWUvUmVkIEV4YW1wbGU_")
or alternatively
deck = Deck.loads(
→˓"ADCJQUQI30zuwEYg2ABeF1Bu94BmWIBTEkLtAKlAZakAYmHh0JsdWUvUmVkIEV4YW1wbGU_")
And done!
print(len(deck.overview.items)) # It's 9. The deck has 9 items in it
You can now edit it
deck.name = 'Renamed deck'
And turn back into a deck code
print(deck.deck_code) # Or str(deck), or deck.dumps(), so you have your options open.

To use all this, you need to have all the existing sets loaded with the Card API, as it’s enriching the data with the
instances of the cards, for easier manipulation. If that is something you don’t want and you’d just like to use the
encode and decode functions, pyArtifact has your back:

from pyartifact import decode_deck_string, encode_deck
deck_data = decode_deck_string(
→˓"ADCJQUQI30zuwEYg2ABeF1Bu94BmWIBTEkLtAKlAZakAYmHh0JsdWUvUmVkIEV4YW1wbGU_")
deck_string = encode_deck(deck_data)

4 Chapter 1. Library overview

CHAPTER 2

Changelog

2.1 0.3.2

2.1.1 New Features

• With Valve publishing the translations, pyArtifact isn’t far behind. While the support for card text was already
implemented, large images were always in english. That is now not the case.

• Localize parameter in Cards will now turn the language into lowercase for you.

2.1.2 Bug Fixes

• Previously it was impossible to get some cards by name, because they shared it with an ability. This is now
fixed, for more read the updated docummentation of get() The affected cards were:

– Sister of the Veil

– Rebel Decoy

– Mercenary Exiles

– Emissary of the Quorum

– Ravenhook

– Ravenous Mass

– Assassin’s Apprentice

– Satyr Magician

– Unsupervised Artillery

– Revtel Investments

– Aghanim’s Sanctum

– Escape Route

5

pyArtifact Documentation

– Messenger Rookery

– Keenfolk Turret

– Steam Cannon

– Assassin’s Veil

– Phase Boots

– Blink Dagger

– Demagicking Maul

– Rumusque Vestments

– Keenfolk Musket

– Bracers of Sacrifice

– Helm of the Dominator

– Wingfall Hammer

– Book of the Dead

– Shiva’s Guard

– Horn of the Alpha

– Nyctasha’s Guard

– Apotheosis Blade

2.2 0.3.0

2.2.1 Prelude

A simple Deck wrapper has been designed and is ready to be tested :)

2.2.2 New Features

• Deck has been ‘done’ (still prototype version). To use it, all sets have to be loaded.

• deck.Overview has been added as a property of the deck. It offers a quick glance over the contents of the
deck

• filtering.CardFilter now has a sub_type filter (no sub_type_in and sub_type_not_in variants just yet)

• filtering.CardFilter now works internally with list of cards instead of a set, to be able to filter through
deck contents etc.

2.2.3 Bug Fixes

• decode_deck_string() and encode_deck() have been refactored and very well docummented and
commented. It should now be fairly easy to understand!

6 Chapter 2. Changelog

pyArtifact Documentation

2.2.4 Other Notes

• Mypy is an a** and we won’t be working with him again. Killer of productivity that only complicated code.
His paws might still be seen here and there, if you see a weird piece of code that could be simplified if it
didn’t require mypy to pass, feel free to point it out. (Typing is still useful and this library should stay pycharm
compatible, no warnings raised there!)

• Tons of docstrings were added in preparation for sphinx autodoc

2.3 0.2.0

2.3.1 Prelude

Deck encoding is now supported

2.3.2 New Features

• decode_deck_string() and encode_deck() are now available, to encode and decode deck strings.
It’s wrapper

2.3.3 Known Issues

• Encoding and decoding isn’t very readable at the moment and could use a ton of pythonization ;)

• Deck - a wrapper for encoding and decoding still needs tons of design work. The question is whether this
library should be a deck building tool, or just a lightweight wrapper, more focused on reporting the decks and
more ‘low level’ edits through dictionaries that are used internally.

2.3. 0.2.0 7

pyArtifact Documentation

8 Chapter 2. Changelog

CHAPTER 3

The main Cards object

class pyartifact.api_sync.Cards(limit_sets=None, localize=None)
Synchronous API around Artifact API sets of cards

Parameters

• limit_sets (Optional[List[str]]) – Whether to only fetch some sets, by default all
ar used (‘00’, and ‘01’)

• localize (Optional[str]) – Which language to fetch strings for. Will be turned into
lowercase automatically.

filter
Creates a new filter instance with all the cards. :rtype: CardFilter :return:

get(name, ignore_shared_name=True)
Gets a card instance by name.

This is is a bit problematic, because some cards can have the same names as their ability. By default, this
library will ignore that fact and return the not ability card. If it fails to find a card that’s not an ability, it’ll
return the first one it registered.

You can override this behavior in which case this method will return a list of cards, instead of the card
directly.

Parameters

• name (str) – Name of the card (case insensitive)

• ignore_shared_name (bool) – If there are more cards with the same name, get just
the first hit.

Return type Union[Item, Hero, Ability , PassiveAbility , Improvement,
Creep, Spell, List[Union[Item, Hero, Ability , PassiveAbility ,
Improvement, Creep, Spell]]]

load_all_sets()
Loads all the sets it should load from the api.

Return type None

9

pyArtifact Documentation

10 Chapter 3. The main Cards object

CHAPTER 4

Deck

Deck wrapper with an overview class.

class pyartifact.deck.Deck(deck_contents)
Class for holding information about a deck. To use this, all sets must be loaded.

As this library isn’t supposed to be a fully fledged deck constructor, accessing deck_contents directly is recom-
mended.

Compared to the out-of-the-box data encoded in the deck string, this object enriches them with an additional
key instance that holds an instance of the deck from pyartifact.Cards

As of now, the deck object does no validations, the rules to follow are:

• Some cards have includes, that are automatically added to the deck and they shouldn’t be in the cards
portion of deck contents.

• Abilities and Passive abilities aren’t able to be included in a deck, as they come with another cards and are
more of a traits than cards.

• Heroes have their own part of deck contents, don’t put them into the cards section

Deck code versions

Deck codes currently have two versions. We are able to load both, but only dump to version 2.

Version Heroes Cards Deck name
1 yes yes no
2 yes yes 63 characters

When loading version 1, this library will still provide a name, which will be an empty string.

Parameters deck_contents (DeckContents) – dict of deck contents

cards
List of dictionaries with all the cards and their information

Return type List[CardDeckType]

11

pyArtifact Documentation

deck_code
Returns the latest version of the deck code.

Return type str

dumps()
Returns the latest version of the deck code, same as deck_code property. For people who are used to
json/yaml api :).

Return type str

expand_cards(hero_includes=True)
Expands all the cards in the deck into a list of their instances, once for each count.

Parameters hero_includes (bool) – Whether also expand auto-includes coming with the
heroes

Return type List[Union[Item, Hero, Ability , PassiveAbility , Improvement,
Creep, Spell]]

classmethod from_code(deck_code)
Constructs the deck object from a deck code string.

Deck.from_code(deck_code) does the exact same thing as Deck.loads(deck_code)

Parameters deck_code (str) – Version 1 or 2 deck code

Return type Deck

heroes
List of dictionaries with all the heroes and their information

Return type List[HeroDeckType]

classmethod loads(deck_code)
Constructs the deck object from a deck code string.

Deck.from_code(deck_code) does the exact same thing as Deck.loads(deck_code)

Parameters deck_code (str) – Version 1 or 2 deck code

Return type Deck

name
Name of the deck or an empty string of there is no name.

Return type str

classmethod new(name, heroes, cards)
Constructs the deck object from the insides of deck contents, for when you can’t be bothered to make a
dict.

Parameters

• name (str) – Name of the deck

• heroes (List[HeroDeckType]) – List of dictionaries holding information about the
heroes

• cards (List[CardDeckType]) – List of dictionaries holding information about the
cards

static new_card_dict(card, count)
Construction of a card dict compatible with the encoding process and Deck object internals

Parameters

12 Chapter 4. Deck

pyArtifact Documentation

• card (Union[Item, Hero, Ability , PassiveAbility , Improvement,
Creep, Spell]) – Instance of a card

• count (int) – How many copies are in the deck

Return type CardDeckType

static new_hero_dict(hero, turn)
Construction of a hero dict compatible with the encoding process and Deck object internals

Parameters

• hero (Hero) – Instance of a hero card

• turn (int) – Which turn the hero will be deployed

Return type HeroDeckType

overview
Returns an overview of the deck, used for quick glances at it’s contents. The overview holds an instance
of the deck and will change with any changes made to the deck.

Return type Overview

class pyartifact.deck.Overview(deck)
A helper object for quick glances over the deck contents.

Parameters deck (Deck) – An instantiated deck object

creeps(return_filter=False)
All the creeps in the deck.

Parameters return_filter (bool) – Whether to return a pyartifact.CardFilter
object or just a List of cards

Return type Union[List[Creep], CardFilter]

heroes(return_filter=False)
All the heroes in the deck, sorted by their turns of deployment.

Parameters return_filter (bool) – Whether to return a pyartifact.CardFilter
object or just a List of cards

Return type Union[List[Hero], CardFilter]

improvements(return_filter=False)
All the improvements in the deck.

Parameters return_filter (bool) – Whether to return a pyartifact.CardFilter
object or just a List of cards

Return type Union[List[Improvement], CardFilter]

items(sub_type=None, return_filter=False)
All the items in the deck.

Parameters

• sub_type (Optional[str]) – Whether to list only certain sub type of the items

• return_filter (bool) – Whether to return a pyartifact.CardFilter object
or just a List of cards

Return type Union[List[Item], CardFilter]

13

pyArtifact Documentation

items_per_subtype()
A more detailed overview of items on the deck in a form of defaultdict(list) where each key is a sub type
and it’s value is a list of those items.

Return type Dict[str, List[Item]]

spells(return_filter=False)
All the spells in the deck.

Parameters return_filter (bool) – Whether to return a pyartifact.CardFilter
object or just a List of cards

Return type Union[List[Spell], CardFilter]

14 Chapter 4. Deck

CHAPTER 5

Card objects

In order to easily work with cards (and abilities), pyartifact wraps them in easier to use objects. The objects are made
by inheriting multiple bases, where each base indicates the presence of a certain attribute. For example all objects
inheriting the Unit class will have attack, armor and hit_points attributes.

5.1 Card types

Some cards from Valve’s API are not included in this library, because they are more of a core mechanics, these cards
would have the type of Stronghold and Pathing.

5.1.1 Cards

class pyartifact.sets_and_cards.Hero(**kwargs)
Inherts from CardBase, ColoredCard, Unit and NotAbility .

includes
List of all the cards this card includes automatically in a deck.

Return type List[Union[Spell, Creep, Improvement]]

passive_abilities
List of the cards passive abilities

Return type List[PassiveAbility]

class pyartifact.sets_and_cards.Creep(**kwargs)
Inherits from CardBase, ColoredCard, Unit, NotAbility , Castable.

class pyartifact.sets_and_cards.Spell(**kwargs)
Inherits from CardBase, ColoredCard, NotAbility and Castable.

class pyartifact.sets_and_cards.Improvement(**kwargs)
Inherits from CardBase, ColoredCard, NotAbility, Castable.

15

pyArtifact Documentation

class pyartifact.sets_and_cards.Item(**kwargs)
Inherits from CardBase, NotAbility . Also has two attributes unique to this type.

Attribute Type Contents
gold_cost int How much gold does it take to purchase from the shop.
sub_type str Subtype of the item - Weapon, Accessory, Armor, Consumable or Deed

5.1.2 Abilities

class pyartifact.sets_and_cards.Ability(**kwargs)
Inherits from CardBase.

class pyartifact.sets_and_cards.PassiveAbility(**kwargs)
Inherits from CardBase.

5.2 Card Base classes

5.2.1 Base

class pyartifact.sets_and_cards.CardBase(**kwargs)
All cards (and abilities) inherit the base.

Attribute Type Contents
id int Id of the card
base_id int Currently same as id
name str Name of the card
type str Type of the card, also indicated by the actual class holding the card
text str Text on the card, includes html
mini_image Optional[str] Url to mini image
large_image Optional[str] Url to large image
ingame_image Optional[str] Url to ingame image

references
List of cards that this card references

Return type List[Union[Item, Hero, Ability , PassiveAbility , Improvement,
Creep, Spell]]

5.2.2 Colored card

class pyartifact.sets_and_cards.ColoredCard(**kwargs)
Cards that belong under a certain color.

Attribute Type Contents
color str blue, black, red, green or unknown. There are no multicolor cards yet

16 Chapter 5. Card objects

pyArtifact Documentation

5.2.3 Unit

class pyartifact.sets_and_cards.Unit(**kwargs)
Cards that can be deployed to a battlefield and fight

Attribute Type Contents
attack int Attack of the unit
armor int Armor of the unit
hit_points int Hit points (health) of the unit

5.2.4 NotAbility

class pyartifact.sets_and_cards.NotAbility(**kwargs)
Cards that are not abilities. Card API provides abilities and passive abilities alongside cards, so in the context
of this library they are treated as cards.

Attribute Type Contents
rarity Optional[str] Rarity of the card, if it has one (base set cards don’t have a rarity
item_def Optional[int] Unknown integer, only present when rarity is present
illustrator str Name of the illustrator that drew the card art

active_abilities
List of the cards active abilities

Return type List[Ability]

5.2.5 Castable

class pyartifact.sets_and_cards.Castable(**kwargs)
Cards that can be casted for mana.

Attribute Type Contents
mana_cost int Mana cost to cast the card

5.2. Card Base classes 17

pyArtifact Documentation

18 Chapter 5. Card objects

CHAPTER 6

Deck encoding and decoding

6.1 Encoding

Logic for encoding deck into a deck code string.

Encoding is done by writing a few things into a bytearray thanks to the magic of bitwise operations. That is then
encoded to base64 and sanitized for url usage.

class pyartifact.deck_encoding.encode.Encoder(deck_contents, version=2)
Main purpose of this class is to hold shared data across the encoding process.

There shouldn’t be a need to use this part of the library, It offers a more low level access to the encoding process,
but doesn’t offer anything more practical than pyartifact.encode_deck() does.

Parameters

• deck_contents (DeckContents) – The deck contents.

• version (int) – Version under which to encode, by default the newest version is used.
Must be on of the supported versions for encoding (atm only V2).

deck_code
Returns the deck code for the deck contents provided.

Return type str

pyartifact.deck_encoding.encode.encode_deck(deck_contents, version=2)
Encodes deck content into a deck code string.

Parameters

• deck_contents (DeckContents) – A dictionary with name, heroes and cards (with-
out those included automatically)

• version (int) – Deck code version, atm only 2 and higher is supported

Return type str

Returns Deck code

19

pyArtifact Documentation

6.2 Decoding

pyartifact.deck_encoding.decode.decode_deck_string(deck_code)
Takes in deck code, e.g. ADCJWkTZX05uwGDCRV4XQGy3QGLmqUBg4GQJgGLGgO7AaABR3JlZW4vQmxhY2sgRXhhbXBsZQ__
and decodes it into a dict of name, heroes and cards.

Parameters deck_code (str) – Deck code

Return type DeckContents

Returns Deck contents

Raises

• InvalidDeckString – When an invalid deck string is provided, e.g. unknown version,
bad checksum etc.

• DeckDecodeException – When something odd happens while decoding

20 Chapter 6. Deck encoding and decoding

CHAPTER 7

Filtering

class pyartifact.filtering.CardFilter(sets=None, cards=None)
Class that allows you to use predefined filters to get the cards you are looking for. The cards are then available
in the cards attribute.

All filter methods return a new filter instance. That means you can both nest filtering methods and save certain
filter to a variables and access them later if you want to go a different path.

color(color)
Filters for a single color.

Parameters color (str) – Color

Return type CardFilter

color_in(colors)
Filters for multiple colors.

Parameters colors (Iterable[str]) – Colors

Return type CardFilter

color_not_in(colors)
For filtering out colors

Parameters colors (Iterable[str]) – Colors

Return type CardFilter

gold_cost(gt=None, gte=None, lt=None, lte=None, eq=None)
Filters out cards by their gold cost, if they have one. This will always filter out cards without gold cost. If
multiple arguments are passed, every card that fits at least one will pass the filter.

Parameters

• gt (Optional[int]) – Filters out cards that have higher gold cost than the number
provided

• gte (Optional[int]) – Filters out cards that have higher or equal gold cost than the
number provided

21

pyArtifact Documentation

• lt (Optional[int]) – Filters out cards that have lower gold cost than the number pro-
vided

• lte (Optional[int]) – Filters out cards that have lower or equal gold cost than the
number provided

• eq (Optional[int]) – Filters out cards that have gold cost equal to the number provided

Return type CardFilter

mana_cost(gt=None, gte=None, lt=None, lte=None, eq=None)
Filters out cards by their mana cost, if they have one. This will always filter out cards without mana cost.
If multiple arguments are passed, every card that fits at least one will pass the filter.

Parameters

• gt (Optional[int]) – Filters out cards that have higher mana cost than the number
provided

• gte (Optional[int]) – Filters out cards that have higher or equal mana cost than the
number provided

• lt (Optional[int]) – Filters out cards that have lower mana cost than the number
provided

• lte (Optional[int]) – Filters out cards that have lower or equal mana cost than the
number provided

• eq (Optional[int]) – Filters out cards that have mana cost equal to the number pro-
vided

Return type CardFilter

rarity(rarity)
Filters for a rarity

Parameters rarity (str) – Rarity

Return type CardFilter

rarity_in(rarities)
Filters for multiple rarities

Parameters rarities (List[str]) – Rarities

Return type CardFilter

rarity_not_in(rarities)
Filters out cards of specified rarities.

Parameters rarities (List[str]) – Rarities

Return type CardFilter

sub_type(sub_type)
Filters out everything but items and leaves just items with a subtype equal to the provided string

Parameters sub_type (str) – Sub type of an item

Return type CardFilter

type(type_, filter_out=False)
Filters for a single type (or anything but a single type)

Parameters

• type – Type of the card

22 Chapter 7. Filtering

pyArtifact Documentation

• filter_out – Whether to filter that type out

Return type CardFilter

types_in(card_types)
Filters out cards that were not passed to this filter

Parameters card_types (Iterable[Union[str, Type[Item], Type[Hero],
Type[Ability], Type[PassiveAbility], Type[Improvement], Type[Creep],
Type[Spell]]]) – Either strings of card types, or this library’s classes of card types

Return type CardFilter

types_not_in(card_types)
Filters out cards that were passed into this filter

Parameters card_types (Iterable[Union[str, Type[Item], Type[Hero],
Type[Ability], Type[PassiveAbility], Type[Improvement], Type[Creep],
Type[Spell]]]) – Either strings of card types, or this library’s classes of card types

Return type CardFilter

23

pyArtifact Documentation

24 Chapter 7. Filtering

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

25

pyArtifact Documentation

26 Chapter 8. Indices and tables

Python Module Index

p
pyartifact.api_sync, 9
pyartifact.deck, 11
pyartifact.deck_encoding.decode, 20
pyartifact.deck_encoding.encode, 19
pyartifact.filtering, 21

27

pyArtifact Documentation

28 Python Module Index

Index

A
Ability (class in pyartifact.sets_and_cards), 16
active_abilities (pyarti-

fact.sets_and_cards.NotAbility attribute),
17

C
CardBase (class in pyartifact.sets_and_cards), 16
CardFilter (class in pyartifact.filtering), 21
Cards (class in pyartifact.api_sync), 9
cards (pyartifact.deck.Deck attribute), 11
Castable (class in pyartifact.sets_and_cards), 17
color() (pyartifact.filtering.CardFilter method), 21
color_in() (pyartifact.filtering.CardFilter method),

21
color_not_in() (pyartifact.filtering.CardFilter

method), 21
ColoredCard (class in pyartifact.sets_and_cards), 16
Creep (class in pyartifact.sets_and_cards), 15
creeps() (pyartifact.deck.Overview method), 13

D
Deck (class in pyartifact.deck), 11
deck_code (pyartifact.deck.Deck attribute), 11
deck_code (pyartifact.deck_encoding.encode.Encoder

attribute), 19
decode_deck_string() (in module pyarti-

fact.deck_encoding.decode), 20
dumps() (pyartifact.deck.Deck method), 12

E
encode_deck() (in module pyarti-

fact.deck_encoding.encode), 19
Encoder (class in pyartifact.deck_encoding.encode), 19
expand_cards() (pyartifact.deck.Deck method), 12

F
filter (pyartifact.api_sync.Cards attribute), 9
from_code() (pyartifact.deck.Deck class method), 12

G
get() (pyartifact.api_sync.Cards method), 9
gold_cost() (pyartifact.filtering.CardFilter method),

21

H
Hero (class in pyartifact.sets_and_cards), 15
heroes (pyartifact.deck.Deck attribute), 12
heroes() (pyartifact.deck.Overview method), 13

I
Improvement (class in pyartifact.sets_and_cards), 15
improvements() (pyartifact.deck.Overview method),

13
includes (pyartifact.sets_and_cards.Hero attribute),

15
Item (class in pyartifact.sets_and_cards), 15
items() (pyartifact.deck.Overview method), 13
items_per_subtype() (pyartifact.deck.Overview

method), 13

L
load_all_sets() (pyartifact.api_sync.Cards

method), 9
loads() (pyartifact.deck.Deck class method), 12

M
mana_cost() (pyartifact.filtering.CardFilter method),

22

N
name (pyartifact.deck.Deck attribute), 12
new() (pyartifact.deck.Deck class method), 12
new_card_dict() (pyartifact.deck.Deck static

method), 12
new_hero_dict() (pyartifact.deck.Deck static

method), 13
NotAbility (class in pyartifact.sets_and_cards), 17

29

pyArtifact Documentation

O
Overview (class in pyartifact.deck), 13
overview (pyartifact.deck.Deck attribute), 13

P
passive_abilities (pyarti-

fact.sets_and_cards.Hero attribute), 15
PassiveAbility (class in pyarti-

fact.sets_and_cards), 16
pyartifact.api_sync (module), 9
pyartifact.deck (module), 11
pyartifact.deck_encoding.decode (module),

20
pyartifact.deck_encoding.encode (module),

19
pyartifact.filtering (module), 21

R
rarity() (pyartifact.filtering.CardFilter method), 22
rarity_in() (pyartifact.filtering.CardFilter method),

22
rarity_not_in() (pyartifact.filtering.CardFilter

method), 22
references (pyartifact.sets_and_cards.CardBase at-

tribute), 16

S
Spell (class in pyartifact.sets_and_cards), 15
spells() (pyartifact.deck.Overview method), 14
sub_type() (pyartifact.filtering.CardFilter method),

22

T
type() (pyartifact.filtering.CardFilter method), 22
types_in() (pyartifact.filtering.CardFilter method),

23
types_not_in() (pyartifact.filtering.CardFilter

method), 23

U
Unit (class in pyartifact.sets_and_cards), 17

30 Index

	Library overview
	Card API usage
	Deck code API

	Changelog
	0.3.2
	0.3.0
	0.2.0

	The main Cards object
	Deck
	Card objects
	Card types
	Card Base classes

	Deck encoding and decoding
	Encoding
	Decoding

	Filtering
	Indices and tables
	Python Module Index

